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The parallel repet i t ion of a motif  modulates  the :Fourier t ransform of the motif  by  the t rans form 
of the repet i t ion arrangement ,  thus  increasing the dispersion of the resu l tan t  t ransform. Several 
a r rangements  are considered in which the repet i t ion involves the int roduct ion of non-crystallo- 
graphic symmet ry .  Stat is t ical  criteria are evaluated for the recognition of each of the result ing 
distr ibut ions and  some comments  are offered on the correlation of the stat is t ical  evidence for 
parallel ism wi th  t h a t  given by  inspection of the reciprocal lat t ice or by  the Pa t te r son  function. 

1. I n t r o d u c t i o n  
1.1 

I t  was pointed out in § 2.4 of the first paper of this 
series (Wilson, 1949) tha t  pseudosymmetry can give 
rise to abnormal intensity distributions, but  it  seemed 
desirable to test the usefulness of the two usual 
distributions before embarking on a detailed s tudy 
of pseudosymmetry.  The discovery of the hypercentric 
distribution by Lipson & Wool/son (1952) suggests 
tha t  this caution was unwarranted, and tha t  a treat- 
ment  of distributions corresponding to the more 
probable types of pseudosymmetry would be useful. 

1.2 

The hypercentric intensity distribution arises when 
two molecules, each with a non-crystallographic centre 
of symmetry,  occupy general positions in a centro- 
symmetric space group. They are then necessarily 
parallel and their Fourier transform is modulated by 
a sinusoidal fringe system which increases the disper- 
sion beyond tha t  of the centrie distribution. An 
obvious extension is (a) tha t  each centrosymmetric 
molecule should consist of two centrosymmetric parts 
related by a further non-crystallographic centre of 
symmetry,  as in Fig. 1. (Dibiphenylene ethylene pro- 
vides an approximation to such a molecule, but  the 
arrangement of molecules is complex (Fenimore, 1948).) 
The modulation pat tern is then the product of two 
sinusoidal fringe systems which, in general, are un- 
related in both spacing and orientation. This extension 
is generalized in § 2, and will be termed hypercentro- 
symmetry.  

Other parallel arrangements have been considered 
and are discussed in §§ 2, 3, 4. They are 

(b) n-fold repetition of a motif by a group of 
multiplicative translations (Fig. 2), which will be 
termed hyperparallelism, 

(c) n-fold repetition of a motif at  regular intervals 
along a straight line, for which the modulation pat tern  
consists of one set of parallel fringes with a profile 
of the form sin ny~/sin yJ, 

(d) many  repetitions of a motif at  random in a 
centrosymmetric or a non-centrosymmetric space 
group, for. which the modulation pat tern  is irregular 
with a centric or acentric distribution respectively. 

1-3 

I t  is obvious tha t  the arrangements (a)-(d.) above 
do not exhaust the possibilities for even parallel 
pseudosymmetry,  but  they  are probably sufficient to 
show the general effects of non-crystallographic 
parallelism on the ordinary acentric and centric 
distributions. So far as is known (§ 5.1), crystallographic 
symmetry  can result in only one or the other of these 
two distributions, however many symmetry  elements 
are present, but  unfortunately the effect of additional 
non-crystallographic symmetry  is not dependent merely 
on whether the space group of the crystal is centro- 
symmetric or not. A preliminary investigation sug- 
gests tha t  the effect of additional non-crystallographic 
symmetry  must be considered separately for at least 
each crystal class. The distributions derived in this 
note cannot, therefore, be applied uncritically to 
cases other than (i) the space groups P1 and P1, 
and (ii) projections without crystallographic symmetry  
or with a crystallographic centre of symmetry  only. 

1.4 

Although the higher types of hypercentrosymmetric 
distribution can be generalized readily from tha t  of 
Lipson & Wool/son, a unified t rea tment  has been 
adopted here in which, so far as applicable, the 
notations of Wilson (1949) and Cram6r ( 1946, chap. 15) 
are used. In addition the structure factor for a single 
motif, which is not necessarily the crystallographic 
asymmetric unit, is denoted by 

~ n  

M exp (i#) = ~ : f s  exp (2zds.rs) , 
j=l 

the structure factor of the repetition arrangement 
(referred to the same origin) is denoted by 
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A exp (i~) = ~  exp (2~is. dj) ,  
j= l  

and tha t  for the whole unit  cell by  F exp (iT), which, 
for all the cases discussed here, may  be written as 

2' exp (iq~) = MA exp i ( # + a ) .  (1) 

With  the structure factor for a non-centrosymmetric 
motif written in the form M = x+iy, the joint prob- 
ability of x lying between x and x+dx, y lying between 
y and y+dy, is (Wilson, 1949) 

(1)P(x, y)dxdy = (~2:zt) -1 exp ( - ( x  ~ +y2)/ZM}dxdy, 
(2) 

m 

where X~ = ~ '  (fj)~ for all atoms in the motif. This 

can also be written as 

(1)P(M, /~)dMd# = (~ZM) -~ exp (-M2/XM)MdMd# 

or (3) 

(1)P(M)dM = (2/Z:~) exp (-M2/Z,~)MdM, (3a) 

since # has a uniform probabil i ty in the range 0 to 
2z. If, on the other hand, the motif is centrosymmetric, 
its structure factor is real when referred to its centre 
as origin, and the corresponding distribution of the 
modulus is 

(1)P(M)dM = (2/~Z'~)½ exp (-M~/2~,M)dM. (4) 

Three criteria already published for the recognition 
of a distribution type are 

z 

(a) the cumulative probabil i ty N(z)= loP(Z)dz, 

where z = [FI~/X = 1/(1) (Howells, Phillips & Rogers, 
1950), 

(b) the test  ratio e = (IFI)~/(IFI ~) (Wilson, 1949), 
and 

(c) the specific variance v = V/_~,2= ((I_(I))~)/~, ~. 
(Wilson, 1951). These will be evaluated for each of the 
cases considered and, for this purpose, some of the 
moments of the distribution functions are required. 
The ruth absolute moment  is 

~m= S:FmP(F)dF (5) 

(since in the present notat ion F is already a modulus), 
and the corresponding central moment  is 

/ ~  = v~ ~or m even, 

= 0  for m odd. 

In  particular v~ is always equal to Z" (Wilson, 1942), 
a consequence of the conservation of the diffracted 
energy. 

In  terms of these, the second and third criteria 
become 

o = ~ /2 :  = ~ / ~  (6) 
and 

v = Vl_r~ = < ~ , > l _ r , _  1 = ,,,I,~- l .  (v)  

2. H y p e r s y m m e t r y  

2.1. Hypercentrosymmetry 
The Lipson-Woolfson case is generalized as follows. 

Consider a crystallographic asymmetric unit  built up 
from 2 n-e centrosymmetric motifs which are related 
by a sequence of n - 1  centres of symmetry  at vectorial 
positions d 2 . . . .  , d~, none of which coincide with a 

Fig. 1. H y p e r s y m m e t r i c  a r r angemen t  wi th  n = 3. The cry- 
s tal lographic centre of s y m m e t r y  (1) is indica ted  b y  a cross, 
the  non-crysta l lographic  local centres (2, 3) are indica ted  
b y  dots ;  d 2 is the  vector  f rom 1 to 2 and  d a the  vector  f rom 
2 t o 3 .  

crystallographic symmetry  centre (see Fig. 1, where 
n = 3). The asymmetric unit  is duplicated by the 
crystallographic centre of symmetry  at d 1 = 0. If  
the unit  cell contains only these two units 

where 
A = 12n-1 cos ~P2 cos ~P3.-. cos Y~n[ , (8) 

~i = 27es. d i , 

M = 12 Z fj cos 0jl,  (9) 
j = l  

where 
0 i = 2~s.  r j ,  

and 
r = 2"-~x '~, .  (1o) 

Hence, for all points in reciprocal space defined by the 
combination t02, Y~3 . . . .  t0~, we have from equation (4) 

[P~(F)dF]~p~...w, 

= (2n/~,)½ exp [-F2/2nX cos ~ v/2.. .cos 2 ~n] dF (11) 
2 n-1 cos ~ . . .  cos ~o n 

and, since each ~j has uniform probabili ty in the range 
0 to 2z, this gives for all reciprocal space 

P , ( F ) d F  = (2-/r=2--1)½ 

× 

'~0 

x sec ~ . . . s e c  ~ , d t o 2 . . . d ~ n d F .  (12) 

There does not seem to be any simple analytic ex- 
pression for Pn(F), though P1 reduces to the ordinary 
centric distribution and P2 can be expressed in terms 
of the zero-order Bessel function of the third kind, 
K 0 (Watson, 1922, p. 78): 

Pg(F) dF = (4/~3X)½ 

x 1½"exp { - F  2 sec 2 y~/4Z) sec todtodF, (13) 
v 0 
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which  becomes,  wi th  the  subs t i t u t i on  sec y~ = cosh 0, 

P2(F) = (~Z")-½ exp ( - F ~ / 8 X )  
0 0  

× I exp ( - F  ~ cosh 2 0 / 8 Z } d ( 2 0 )  (14) 
0 

= (~ral)  -½ exp  (-F~/81)Ko(F~/81),  (15) 

by  equa t i on  (5), p. 172, W a t s o n  (1922). The  func t ion  
K 0 has  an  in f in i ty  a t  the  origin;  i t  is r a t h e r  in te res t ing  
t h a t  Po(F) is zero, P I ( F )  is f ini te  a n d  Pe(F) a n d  
h igher  m e m b e r s  of the  sequence  are  inf ini te  for  F = 0 .  

2.2. Hyperparallelism 
Consider  a n o n - c e n t r o s y m m e t r i c  space g roup  and  

an  a s y m m e t r i c  un i t  con ta in ing  2 n para l le l  non-cent ro-  

Fig. 2. Hyperpara l l e l  a r r a n g e m e n t  wi th  n = 3. The displace- 
men t s  re la t ing parallel  mot i fs  are ind ica ted  by  the  lines 
m a r k e d  1, 2, 3; the i r  lengths  are all, d2, d a. 

s y m m e t r i c  mot i fs  r e l a t ed  by  a chain  of n displace- 
m e n t s  (d 1 to  dn) , as in Fig.  2 for  n = 3. This gives 

A = ]2 n cos YJ1 cos y~2.., cos y~[ , (16) 

where ,  in th is  case, 

~S = 7rs. d s , 
a n d  

~Y" = 2 n ~ M .  (17) 
t 

Then,  by  equa t i on  (3a), 

P,(F)dF = 

(2FdFi 7rnz) I: rr ' ' "  f½exp ( -F2 sec~ Y-'l...se°2 VQni 2nZ} 
~0 

× sec ~ ~01... sec ~ yJ,dyJ1. • • d r / , .  (18) 

There  is an  obvious  r e semblance  be tween  this  a n d  
equa t i on  (12), which can be increased  to fo rma l  
i d e n t i t y  in the  fol lowing way .  Consider one-hal f  of 
the  c e n t r o s y m m e t r i c  mot i f  of § 2-1, for  which,  in an  
obv ious ly  ana logous  no ta t ion ,  

½m 
M '  exp  (i#) = ~ f j  exp (iOs), (19) 

1=1 

a n d  
A '  = 12 n cos # cos V~2... cos V~n[ (20) 

_~ = 2 - z ' ~ , .  (21) 

Then,  f rom equa t i on  (3), 

Pn(F)dF = (2FdF/7~nZ) 

x { - F  ~" sec 9"/t sec 9" y ~ . . .  see ~ yJ~/2nZ "} 
"~0 

× sec 9 # sec 2 y J . . . ,  sec 2 v/,flltdyJg.., dton, (22) 

which is fo rma l ly  ident ica l  wi th  equa t ion  (18), as i t  
is i r r e l evan t  w h e t h e r  t he  f i rs t  i n t eg ra t ion  va r iab le  is 
called Y~I or # .  

This fo rma l  i d e n t i t y  in t roduces  a va luab le  economy 
into  the  subsequen t  work.  A n y  case of h y p e r s y m m e t r y  

for  which  A t akes  the  fo rm I2 n h cos ~sl will t hen  
j = l  

be covered by  a genera l  t r e a t m e n t ,  i r respect ive  of the  
pa r t i cu l a r  phys ica l  s ignif icance a t t a c h e d  to  each Y~s" 
Thus,  where  the  cell conta ins  only one or two a s y m m e -  
t r ic  uni ts  (in the  c rys ta l lograph ic  sense), the  resul ts  to  
be ob ta ined  for n = 0, 1, 2, . . .  r ep resen t  wi th  equal  
va l id i ty  the  sequences  acentr ic ,  centric,  b icentr ic  
(=  hypercen t r i c ,  L ipson  & Woolfson) ,  . . . ,  or al ter-  
na t i ve ly  apara l le l  = acentr ic ,  paral lel ,  biparal lel ,  . . . .  

2 .2 -1 . - -One  r a t h e r  d i s tu rb ing  consequence of th is  
is t h a t  two  para l le l  n o n - c e n t r o s y m m e t r i c  mot i fs  re- 
la ted  by  a non-c rys t a l log raph ic  t r ans l a t i on  in a non- 
c e n t r o s y m m e t r i c  space g roup  give the  s ame  (centric) 
d i s t r ibu t ion  as when  t h e y  are in c e n t r o s y m m e t r i c  
an t ipara l le l i sm.  E q u a t i o n  (18) becomes 

P(F) = (2F/~I) exp ( - F  ~ see 2 g,/2I)dv2, (23) 

whence,  wi th  the  subs t i t u t i on  t = t a n  % 

P(F) 
CO 

= ( 2 F / ~ Z  ~) exp (-F2/2Z,) l exp  (-F2te/21)dt (24) 
0 

= (2/z2:)½ exp ( - F 2 / 2 1 ) ,  (25) 

which  is t he  centr ic  d i s t r ibu t ion  (equat ion  (4)). This 
conclusion is discussed in § 5.2.1 below. 

2.3. Criteria for hypersymmetry 
2.3.1. The N(z) test.--Equation (12) can be wr i t t en  

in t e r m s  of z as 

P(z)dz = 
,Tg ~ 2  " 

2½n-1~ -n+½ lo z-~ exp { - z  see 2 . .  see 2 ~on/2 n} 

x see ~o2. • • see v2~dv22.., d~o,flz, (26) 
whence  

N(z )  = (2/~) n-1 x 

. f % r f  . . oo . . 

I) 0 "0  

I t  is easy  to show di rec t ly  f rom equa t ion  (18) t h a t  
for  the  aeent r ic  d i s t r ibu t ion  (when ~1 --- ~ -- . . .  -- 0 )  

No(z ) = 1 - e x p  ( - z ) .  (28) 

The above  equa t ion  gives 

Na(z ) = err (z/2)½ (29) 
a n d  
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Table 1 (a). Statistical data for the first few hypersymmetric distributions 

n 0 1 2 3 

Acentric  or Centric or Bicentric or Tricentr ic  or 
aparaIlel parallel  biparallel t r iparal lel  

z No(z) Nl(z)  1%(z) Ns(z) 

0"00 0.0000 0.0000 0.0000 0.000 
0"05 0.0488 0.1774 0"292 a 0.386 
0"1 0.0952 0"2481 0-3680 0.460 
0.2 0" 1813 0.3453 0-4639 0.548 
0.3 0.2592 0.4187 0"5261 0.605 
0.4 0-3297 0.4738 0-573 e 0-647 
0-5 0"3935 0.5205 0.611~ 0.680 
0"6 0.4512 0-5614 0"6435 0.705 
0"7 0.5034 0.5972 0"6705 0.727 
0.8 0.5507 0" 6289 0.6939 0.746 
0-9 0.5934 0.6572 0.7147 0-762 
1.0 0-6321 0.6833 0.733~ 0.776 
1-2 0.6988 0.7267 0.7642 0.800 
1.4 0.7534 0.7633 0.7910 0-820 
1.6 0.7981 0-7940 0.8131 0-837 
2-0 0.8647 0.8427 0.8485 0.863 
2.4 0.9093 0.8786 0-8759 0.884 
2-8 0.9392 0.9058 0"8969 0-900 

2 16 2 7 
~n ~---- 0.785 - ---- 0.637 - - =  0.516 - -  ---- 0.418 y~ y~3 y~5 

vn 1 2 3½ 5~ " 

Table l(b) 

n 4 5 6 7 

~n 0"339 0"275 0-223 0" 180 
Vn 9" 125 14" 19 21"78 33" 17 

½ 
N~(z) = 2~-1 f e~ f  [½z½ sec ~ ]d~ ,  

~0 
( 3 0 )  

which is easily proved to be equivalent to Lipson & 
Woolfson's expression, and is better suited to numerical 
integration than  equation (15). Table l(a) and Fig. 3 

1"0 

0"5 

immediate application is foreseen. The limiting form 
for n -+ ~ is presumably N(z) = 0 for z = 0, N(z) = 1 
for z > 0. 

2.3.2. The variance and ~ tests.--The ruth absolute 
moment of Pn is 

m 

× . . .  exp { - F  2 see 2 ~)1.-. sec2 ~P,/2nZ} 

( F,(½m+I)Z½ m 

× s e c 2  ~ ) 1 .  • • s e c g  ~ ) n d ~ / ) l "  • • dv2,flF 

f ½~c°sm ~vl" • • c°sm ~Pnd~l • • • d~Pn 

Z 

°o ~ ~ 
Fig. 3. The  cumula t ive  d is t r ibut ion  Nfz) for the  f irst  four  

h y p e r s y m m e t r i c  eases, n --~ 0, 1, 2, 3 (Table l(a)). 

indicate t h e  comparative forms of these functions for 
n = 0, 1, 2,  3 .  N 2 ( z  ) was evaluated by summation at 
5 ° intervals, while Na(z ) was computed from 15 ° 
intervals in both ~0~ and ~v3. Higher members of the 
series were not considered worth computing, as no 

(31) 

(32) 

= ~-½"2½m".U"(½m+½)F-"+l(½m+l)Z ½m . (33) 

Thus v.,2 = ~v for all n, and the test ratio is,  from 
equation (6), 

~n = 23n-2~-2n+1 , (34) 

with the successive values shown in Tables l(a) and 
l(b). 

The specific variance is, from equation (7), 

v. = 2 ( ~ ) - - 1 ,  (35) 

the successive values of which are given in the same 
tables. Fig. 4 indicates the relation between the 
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1.0 

0.s 

Table 2(a). Statistical data for a non-centrosymmetric motif  repeated n times in a straight line 
n 1 2 3 4 
z Nl(z) N~(z) N.(z) N4(z ) 

0-00 Acentric; Centric; 0.0000 0-0000 
0"05 see see 0.2436 0.2864 
0.1 Table 1, Table 1, 0.3360 0.3948 
0.2 col. 2 col 3 0.4471 0.5178 
0.3 0.5200 0.5848 
0.4 0.573o 0.6401 
0-5 0.6138 0.6763 
0-6 0.6466 0 . 7 0 4  ° 
0.7 0.6738 0.7259 
0.8 0.6960 0.744 o 
0.9 0.7160 0.7593 
1.0 0.7346 0-7725 
1.5 0.8005 0.8208 
2.0 0.8450 0.8540 
2.5 0.8775 0.8791 
3"0 0.902e 0.8990 

Qn 0"785 0"637 0"540 0"473 

vn 1 2 3} 4½ 

v a  0 

O rl 

r'l 

o 
V ( ~  v 

Ol -~ 1'0 I'5 

Fig. 4. A comparison of the test ratio, Q, and the specific 
variance, v, for each of the distributions discussed in this 
paper. 
O : hypercentrosymmetry (n = 0, 1, 2, 3, 4). 
V:  regular linear repetition of a non-centrosymmetrie 
motif. 
A: regular linear repetition of a centrosymmetric motif. 
[-7: multiple random repetition. 

specific variance, v~, and Q~ for this and other sequences 
of hypersymmetr ic  distributions. 

3.1 
3. R e g u l a r  p a r a l l e l  r e p e t i t i o n  in  l i n e  

For the regular repetition of n motifs at  intervals d 
along a straight line, A takes the form 

sin nyJ I 
s i n F l '  where ~ - - ~ r s . d .  (36) 

3.2 

3.2.1. Non-centrosymmetric moti f . - -For all points in 
reciprocal space with the same value of y3, equation 
(3a) takes the form 

2n sin 2 ~ exp ~ FSn sin' v 2) 
[(1)Pn(M)dM]~ = i sin'  n~ , ~ -s in '  nv 2 ~ F d F ,  

(377 

where X = nXM and includes all atoms in the cell. 
For the entire reciprocal lattice 

(1)Pn(F)dF = 

(4n/X~ 7 sin'  ~ exp dy~FdF (387 

or, on transforming to z, 

(1)Pn(z)dz = 

(2n/zr) n sin'y~ exp d~pdz (39) 
sin'  n~ sin'  n~ J ' 

whence the cumulative probabili ty N(z 7 becomes 

<l)Nn<z) : 1-2~r -1 i½~exp { z n s inS~t  
• ~o _ s i n ' n ~  J d ~ "  (40) 

For n = 1 this is [ 1 - e x p  ( -z) ] ,  the ordinary acen- 
tric form. For n = 2 (the parallel case of § 2.2) it is 
possible to show, either by reversing the order of the 
integrations in the derivation of equation (40), or by 
expansion and term-by-term integration, tha t  this has 
the usual centric form, erf (½z)½. (1)Nn(z) has been 
evaluated for n = 3 and 4 by summation at 5 ° inter- 
vals and the results are given in Table 2(a) and Fig. 5. 

The first absolute moment  is 

(1)%, t = 
co ~½n sin~_v2 F ' n  sin' v2~ 

(4n/XJr) lo Jo s in~nyjexp{ - ~ s i ~ n ~ o J  dy~E'dF (41) 

---- ½ ( -~)½ {2 S:u I sin n~P . [ d o} (42) 
For odd values of n (= 2k+ 1) the term in brackets 

gives the Lebesgue constants, L~, which are impor tant  
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1-0 
N(z) 

0-5 

[ Z 

Fig. 5. The cumulative distribution N(z) for n non-centre- 
symmetric motifs at equal intervals on a straight line 
(n -~ 1, 2, 3, 4) (Table 2(a)). 

in the theory  of the  convergence of Fourier  series. 
Fej6r (1910) gives a series which was found convenient  
for the computa t ion  of the earlier constants,  and 
Watson (1930) gives the  asymptot ic  formula 

L~ = 4~ -2 [ln n÷2.441 ÷ . . . ] ,  (43) 

which gives values closely in accord with Fej6r 's  down 
to k ~ 3, below which Fej6r 's exact  series was used. 
Watson ' s  asymptot ic  formula (but not  Fej6r's) m a y  
be used for the even values of n also, but  was sup- 
p lemented by  direct expansion and integrat ion for 
n = 2 and 4. 

The second moment  is 

l ~ s i n ~  nt 0 -  
(1)~,,2 = (227/~n) sTnn~ dy~, (44) 

which m a y  be in tegrated with the aid of the Fourier  
cosine expansion of sin 2 n~/sin" ~ (Whi t taker  & Wat-  
son, 1935, equat ion (84), p. 171) and gives (1)v2 = 
for all n, as expected. The four th  moment  is 

l :  ~ s in '  n~  d ~ ,  (45) (1)vn, , = 4,~/ren 2 sin ~ ~v 

which is convenient ly  evaluated by  squaring the 
series just  ment ioned and integrat ing te rm-by- te rm.  
This gives 

n 

(l)v~,, = [4n -~2  j ~ - 2 ]  2: ~ = [~n-X(n+ 1)(2n+ 1)-212:  ~ 

i=~ (46) 
so tha t  the specific variance is 

(1Iv. ; g 2 n +  - ~ .  (471 

Values of this and the tes t  rat io are given in Tables 
2(a) and 2(c) for 1 ~< n ~< 10. 

3.2.2. Centrosymmetric moti f . - -The analysis is similar 
to t h a t  of § 3-2.1, and gives 

m 

(1)P,,(F)dF -- 
~'gn_ sin2 ~ 

2~-l(2n/Z~)½ 1½exp { ~0 22~ sin~ nyJJ [ ~ldyJdF,sinv/ 

(4s)  

(~)~.(~) = 2~-11½~erf [ sm 

This reduces to famil iar  forms for n = I and 2, 
and has been in tegrated numerical ly  for n -- 3 and 4 
(see Table 2(b) and Fig. 6). 

The moments  are 

(1)v,,1 = 2(2L ' /~n)  ½ I i  ~ sin n~v s i - ~  I d~v, (50) 

so t ha t  comparison with equat ion (42) gives 

(]-)v,~,l = 2} /2 . (1 )v . , l  • (51) 

1"° I N'(z) 

0.5 

z 

i o~ ~ ~ 
Fig. 6. The cumulative distribution N(z) for n eentrosymmetric 

motifs at equal intervals on a straight line (n = 1, 2, 3, 4) 
(Table 2(b)). 

Similarly 
( i)v. ,2 = (l)v. ,2 = _r,  

(T)~.,,  = ~(1)~ , , , , ,  (52) 
whence 

(T)e~ = 8~-2( 1)e,, (53) 
and 

,.)v 1 , . ,  

the  v~lues of which are listed in Tables 2(b) and 2(c). 

3.3 

The corresponding values of v n and ~n from 3.2.1 
and 3-2.2 are plot ted  in Fig. 4, and it  is most  remark-  
able t h a t  t hey  should all lie so very  near  the  curve 
obtained in § 2.3.2, bu t  not  quite on it. I t  is also note- 
wor thy  t h a t  for a given number  of repeated motifs  
the effects are much more pronounced when they  are 
arranged regular ly  in a s t ra ight  line, ra ther  t h a n  in 
some hypersymmet r ic  scheme. 
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Table  2(b). Statistical data for a centrosymmetric motif repeated n times in a straight line 
n 1 2 3 3 
z Ndz) N~(z) N~(z) ~V4(z ) 

0.00 Centric; Bicentric; 0" 0000 0.0000 
0.05 see see 0.3491 0.401 o 
0.1 Table l, Table 1, 0.439 o 0.4864 
0.2 col. 3 col. 4 0.538~ 0-5899 
0.3 0.5993 0.650~ 
0.4 0.6434 0.691 s 
0.5 0.67% 0.7224 
0.6 0.7041 0.7464 
0.7 0.726~ 0-765 s 
0.8 0-745 s 0.781 s 
0.9 0.7629 0-795~ 
1.0 0.776 s 0.8075 
1.5 0.828 s 0.8492 
2.0 0.862 s 0.8755 
2.5 0.886 s 0.8944 
3.0 0-905~ 0-9091 

@n 0"637 0"516 0"438 0-383 

Vn 2 3½ 5~ 7¼ 

Table  2(c) 

n 5 6 7 8 9 10 

(1)0n 0"424 0"385 0"355 0"330 0"309 0"290 
(1)vn 5~ 7~ 8-~ 9¼ l l ~ r  12~ 
(T_)@n 0"343 0"312 0'288 0"268 0"250 0"235 
(1)vn 9~ i l~ 13~ 15{ 17~ 19¢~ 

4. Many paral le l  repet i t ions  at r a n d o m  

For ,  say ,  t en  or more  mot i fs  r e p e a t e d  r a n d o m l y  b u t  
in  para l l e l  o r i en t a t i on  the  m o d u l a t i o n  p a t t e r n  is 
i r regu la r  a n d  can  be r ega rded  as h a v i n g  a . r easonab le  
a p p r o x i m a t i o n  to  one of t he  usua l  centr ic  a n d  acent r ic  
d i s t r ibu t ions .  

4.1. Non.centrosymmetric motif in a non-centrosymme. 
tric arrangement 

P(M, [e)did/z = (~zZ~±) -~ exp (-M2/~,z~)MdMd/~, 
(55) 

P(A, o~)dAd~ = (=Z~) -1 exp (-A2/Za)AdAdo¢, (56) 

where  2: a = ~ (i  s) = n, t he  ' la rge '  n u m b e r  of repe- 
1 

t i t ions .  H e n c e  

P(F)dF 
¢~ ¢~ ¢~¢ { F 2 A~.} dA d~d#Fd F 

= (=~n~)-l)o .~o )o exp A~Z~ -~ 
(57) 

0 exp ~ ~ FdF.  

P u t t i n g  x 2 = F2/X a n d  y = A2X½/nF gives 

dy 
= o x p  

Y/) Y 
so t h a t  

P(F)dF = 4X-1Ko(2X - ~F) FdF 

(58) 

, (59) 

(60) 

(Watson ,  1922, p. 183, e q u a t i o n  (15)). T r a n s f o r m i n g  
to  z a n d  i n t e g r a t i n g  w i th  t h e  aid of a s t a n d a r d  re- 
currence r e l a t ion  (Watson ,  p. 79, e q u a t i o n  (5)) gives 

N(z) = 1-2Z½Kl(2Z½), (61) 

which  is dep ic ted  in  Fig.  7 (curve b) a n d  t a b u l a t e d  in 
Tab le  3, co lumn 1. 

1 "0 ! N(z) 

0"5 

z 

o i ~ 

Fig. 7. The cumulative distribution N(z) for a large number of 
motifs repeated at random, but in parallel orientation 
(Table 3). 
a: Centric (one centrosymmetric motif), or parallel (two 
non-centrosyrnmetric parallel motifs). 
b: Non-centrosymmetric motif; non-centrosymmetric ar- 
rangement. 
c: Non-centrosynunetrie motif; centrosymmetric arrange- 
ment or vice versa. 
d : Centrosymmetric motif; centrosymmetric arrangement. 
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The moments  are convenient ly  evaluated with the  
aid of the  relat ion (Watson, p. 388) 

S:Kp,t)tq-ldt= 2q-2/~ ( ~ ) / ~  (~-~)  , ,62) 

and  are v i = ¼gZ½, (63) 

v2 = X ,  (64) 

V 4 ---- 4 ~  v'2 , (65) 
whence = (g/4) 2 - 0 .617,  (66) 

and v = 3 .  (67) 

The _N(z) curve closely resembles tha t  for the  paral le l  
d is t r ibut ion due to two paral lel  motifs. The addi t ion 
to these two of fur ther  paral lel  motifs seems to have  
only a slight effect on ~ and N(z); the  specific variance, 
which is so much  more sensitive to changes in the  
dis t r ibut ion of the  larger F ' s ,  shows a larger change. 

4-2. Centrosymmetric motifs in a non-centrosymmetric 
arrangement 

I n  a s imilar  way  

P(F)dF 

2A~.~ A 2 }  dAtival.F, (68) 

CO 
2F½dF I exp (-x(yg÷ l/y~)}dy, (69) 
~½(2X)I o 

where 

so tha t  
X 2 =P2/2Z and  y 2 =  (2Z)½A2/nF, 

P(F)dF = (2/Z:)½ exp {-(2/Z)½F)dF, 

N(z) = 1 - e x p  { - (2z )½} ,  

and the moments  are readi ly  de termined to be 

vl = (½2)½, 

~'2 _~V'  

v4 = 62:2 , 

whence ~ = ½ 

and  v = 5 .  

(70) 

(71) 

(72) 

(73) 

(74) 

Values of N(z) are given in Table 3 and  are depicted 
in Fig. 7, curve c. I t  is evident  t ha t  these results apply  
equal ly  to the converse case of non-cent rosymmetr ic  
motifs repeated in a centro-symmetr ic  arrangement .  
The result ing space group in  either scheme is non- 
centrosymmetric .  

4.3. Centrosymmetric motif in a centrosymmetrio arrange- 
ment 

For  th is  
co { F*n } 2 

(2/rcZ½)dF ¢ ~o exp 2ZA 2 2n  A-  P(F)dF (75) 

CO 
= (dF/~.~½) I exp {-x(y÷ I/y} --dY, (76) 

o Y 

Table 3. Statistical data for multiparallel random arrangements 

Non-centrosymmetric 
motif, 

non-centrosymmetric 
random arrangement 

Centrosymmetrie 
motif, 

non-centrosymmetric 
random arrangement 

and vice versa 

Centrosymmetric 
motif, 

centrosymmetrie 
random arrangement 

z N(z) N(z) z N(z) 

0.0000 
0.1263 
0.2183 
0-3106 
0.3981 
0.4785 
0.5508 
0.6150 
0.6713 
0.7203 
0-7626 
0"7991 
0-8303 
0"8569 
0.8795 
0.8987 
0.9150 
0.9287 
0.9413 

0-00 
0-04 
0"09 
0.16 
0.25 
0"36 
0-49 
0-64 
0-81 
1"00 
1.21 
1"44 
1.69 
1.96 
2.25 
2.56 
2.89 
3-24 
3.61 

0.0000 
0.2711 
0"3606 
0.468, 
0.5391 
0.5912 
0.6321 
0.6655 
0.6936 
0"7177 
0"7,38~ 
0.7569 
0.7876 
0.812 a 
0.8329 
0.8499 
0.8647 
0.8931 
0.9137 

0.500 

0-00 
0.05 
0.1 
0.2 
0"3 
0.4 
0.5 
0.6 
0-7 
0"8 
0.9 
1.0 
1.2 
1.4 
1-6 
1.8 
2-0 
2-5 
3.0 

0.617 

0.0000 
0.3737 
0.460 a 
0.557 e 
0.6171 
0.6599 
0-6928 
0-7194 
0.741 e 
0-7606 
0.7768 
0-7910 
0.8151 
0.8335 
o.85o. 
0"8639 
0"8755 
0.8994 
0.9157 

0.405 
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where 
x 9 = F~/4Z, y = A~-F,½/Fn, (77) 

so tha t  i 
P ( F ) d F  = (2/7~Z½)Ko(F/Z,½)dF (78) 

(compare equation (60)), and the procedure of §4.1 
gives 

N(z) -- 1 - 2 z  -1 1½~exp (-z½ sec OidO, (79) 
~0 

h = 2~-~27½, ] 

~2 = Z, i (80) 
h = 9 1 2 ,  

whence ~ ---- 4/:~ 2 ---- 0"405, | 
(81) 

and v = 8 .  

The values of hT(z) are given in Table 3 (see also Fig. 7,. 
curve d). The analysis of this paragraph is valid even 
if none of the centres of symmetry  of the motifs 
coincides with the centres of symmetry  of the arrange- 
ment, in which unlikely event the unit cell would be 
non- centrosymmetric. 

4.4 

Corresponding values of v and ~ for these cases of 
random repetition are plotted as squares in Fig. 4, 
and seem to represent the earlier part  of another curve, 
roughly parallel to those of § 2 and § 3. I t  is possible 
to devise systems corresponding to higher points on 
such a curve, but  they are highly improbable and the 
analysis becomes so complex tha t  their examination is 
impracticable. 

5. D i s c u s s i o n  
5.1. Oc~urre~nce 

The various repetition patterns discussed in the 
preceding sections have resulted from the introduction 
of symmetry  operations (centres of symmetry  or 
translations) unrelated to the space group. I t  is im- 
por tant  to ascertain whether such parallelism of an 
extended motif could ever occur through space-group 
symmetry  alone. As a result of an extensive, but not 
exhaustive, search it  has been concluded tha t  it can 
occur only for the ordinary non-primitive cells, in 
which case the modulation pat tern has a simple 
relation to the reciprocal lattice and results in the 
familiar and characteristic systematic absences. Paral- 
lelism will also occur in projections on to a glide plane, 
but  it is again recognizable directly from the syste- 
matic absences produced. 

Parallelism of the types envisaged here does not, 
therefore, appear to occur as a result of space-group 
symmetry.  I t  can occur, however, as a result of the 
possession by the molecules of some symmetry  elements 
which are not used in the space group adopted by the 
crystal. In  addition to the examples cited by Lipson 
& Woolfson (1952) for hypercentrosymmetry we have 
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referred earlier to dibiphenylene ethylene. Fur ther  
examples are given in Fig. 8(c) and (d). Regular 
parallel repetition in a straight line or even at  random 

(a) 

x " x ,,~ 

X 

X 

~ '/Yy / ~ ' "  Y (c) 

Y Y 

Fig. 8. Examples  of molecules exhibi t ing hype r symmet ry .  
(a) and (b) Regular  repet i t ion in a s t ra ight  line. 
(c) If  X---- Y this is a perfect  example  of hypercentro-  
s y m m e t r y  (n----3); if X ¢ Y it is s tr ict ly only hyper-  
parallel (n ---- 2), bu t  would approximate  so closely to She 
former as to be indist inguishable experimental ly .  
(d) Is  s tr ict ly an  approx imat ion  to parallelism, but ,  unless 
X,  Y are very  dissimilar, it  approximates  very  closely to 
hype rcen t ro symmet ry  (n---- 2). 

may occur in some polymers and proteins (Fig. 8(a), (b)), 
although it  is doubtful then whether the repeated 
motifs would contain more than a fraction of the total  
scattering power in the unit cell.* 

5.2. Recognition of parallelism 

5.2.1. From inspection or the Patterson map.- -The  
simpler types of modulation .pat tern should be 
evident upon inspection of the weighted reciprocal 
lattice, but  modulation pat terns composed of several 
unrelated fringe systems or the irregular varieties 
considered in § 4 will not be readily recognizable in 
this way. Moreover, in many practical problems the 
structural pseudosymmetry may only approximate to 
one of those considered here, or may be partial in 
tha t  the repeated motifs do not account for all the 
structure. In  such cases 'modulation'  effects may be 
observable despite masking, but the foregoing results 
cannot be expected to hold precisely. 

The Patterson synthesis then furnishes more detailed 
information, for it  will contain exceptionally strong 
peaks due directly to the repetition translations. Thus 
for the arrangement of § 3 the Patterson map will 
take the form 

~D(r) = •  F 2 cos (2~s. r) (82) 
8 

= ~  M 2 ( sin~ n~v / 
\ s---:m-~-] cos (.2~s. r ) ,  (83) 

which can be expanded (Whittaker & Watson, 1935, 
p. 171) as follows: 
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f~)(r) = Z  M 2 cos ( 2 ~ s .  r ) ( n ÷ 2 ( n - 1 )  cos 2V 
8 i 

÷ 2 ( n - 2 )  cos 4 ~ + . . .  ÷2  cos 2(n-1)lp} (84) 

= 2  M~(n cos ( 2 z s . r ) + ( n : - l ) [ c o s  {2ns. ( r + d ) )  
8 

+cos { 2 g s . ( r - d ) ) ] + . . . }  (85) 

This can be interpreted as the superposition of copies 
of the Patterson map of the mot i f  alone: n copies 
of the original; ( n - 1 )  copies displaced by + d and an 
equal number displaced - d ;  ( n - 2 )  copies displaced 
+2d  and - 2 d  respectively, and so on. 

For the hypersymmetric problem the Patterson 
function can be written as 

(~)(r) = ~ :  M 2 ( 2  n - 1  c o s  ~ 2 - . .  c o s  ~fn) 2 COS (27~S.  r) 
8 

n--1 
=.~' M ~/-/(1 +cos 27Jj) cos ( 2 x s . r ) ,  

s j 
(86) 

which can be expanded and interpreted in an analogous 
fashion as the superposition of displaced copies of the 
motif Patterson resulting in a number of 'origin' 
peaks at various points in the cell. Even when there 
are other atoms in the cell, the repeated motifs will 
give rise to strong peaks at the same points in Patter- 
son space, but they are then somewhat less conspicuous. 
Patterson (1949) has already described such peaks 
occurring in the vector map of a structure containing 
some parts which conform to what may now be 
recognized as the Lipson-Woolfson case of hyper- 
centrosymmetry. This approach endorses Patterson's 
conclusion tha t  to any peak at a point rj in the 
Patterson map of a centrosymmetric structure there 
is 'some centrosymmetry about the point ½rj in the 
structure ' ;  the stronger the peak the more extensive 
is the centrosymmetry about tha t  point. 

We see here an analogue of this for non-centro- 
symmetric structures; namely the well-known fact 
tha t  to any peak at a point rj in Patterson space there 
correspond some equivalent intervectors in the struc- 
ture. When the peak is very strong, and cannot be 
accounted for by heavy-atom vectors, it indicates 
some measure of non-crystallographic parallelism. The 
[001] Patterson map of menthol (C31) shows two ex- 
ceptionally strong and sharp peaks of this type which 
indicate extensive parallelism. 

Inspection of the weighted reciprocal lattice and the 
study of the Patterson map are evidently then the 

most sultable methods in any a t tempt  to detect 
parallelism, especially since they will reveal partial  
parallelism. In particular, there should never be any 
difficulty in practice in deciding whether a distribution 
of the centric type has arisen from centrosymmetry 
or the parallelism of two non-centrosymmetric motifs 
in a non-centrosymmetric cell. 

5.2.2. Recognition by intensity statistics.--After the 
foregoing remarks it may  be wondered why hyper- 
symmetric distributions have been investigated sta- 

tistically. Aside from their interest as mathematical  
curiosities, however, these results may  assist in the 
identification of the kind of repetition, and will make 
users of statistical methods aware of the existence of 
additional distribution types. In particular, if the 
statistical criteria determined in any problem do not  
indicate unambiguously a centric or an acentric 
distribution, the Patterson map should be examined 
for evidence of parallelism; this, when present, always 
increases the dispersion above tha t  characteristic of 
the space group. The interpretation of any of the 
criteria for these more highly dispersive distributions 
is less easy. The margin of discrimination diminishes 
for the N(z) plot as the multiplicity of repetition 
increases, but reference to Fig. 4 shows tha t  a simul- 
taneous determination of v and 0 may give a more 
reliable indication of the type of arrangement. The 
value of v is increased by the presenc e of experimental 
errors of intensity estimation, and it  may  also be 
necessary to make allowance for the limited number of 
atoms in the motif (§ 5.3.1). The interpretation of such 
results may be ambiguous whenever the parallelism 
is inexact or only partial. Chemical evidence will 
usually give warning of the possibility of parallelism; 
the combined evidence from inspection of the reci- 
procal lattice, the Patterson map and the statistical 
criteria will then demonstrate its existence and may  
indicate its extent. 

5.3 

5"3"1. Limitation of number of atoms.--In the original 
description of the variance test (Wilson, 1951) it was 
shown that  V takes the form H2-Z'a for the acentric 
distribution and 2H2-3X4 for the centric distribution, 
where H 4 --~f~. for all atoms in the unit cell. 

The second term allows for finiteness of the number 
of atoms in the asymmetric unit. As the repeated 
motif is never likely to contain many  atoms, and as 
this term appears to have greater significance in the 
centric case, it was considered desirable to determine 
its importance in the higher members of the hyper- 
symmetric sequence. :For this purpose the central 
moments are calculated from the moments of the 
distributions of the individual atomic variables, 
random as a function of ri, which make up the struc- 
ture factor. These are 

~i -~ 2nfi cos (2~s. ri) cos ~2"'" COS ~n" (87) 

Averaging over regions of reciprocal space for which 
the y?s are constant gives for the second, fourth and 
sixth central moments 

/~ (i) 22n-1 2 ~, 2 = f i  cos2 ~2.--cos~ ~n, (88) 

/~n, (~) 3 24n-a f4 (89) ~--- • -  ~ i  COS4 ~)2" • • COS4 ~ n  , 

# n , ~ ) _ _ _ 5  e ~ - 4  6 .2 f i  c°s6 ~ ' - "  c°s6 ~n" (90) 

Hence, from results given by Cramdr (1946, pp. 188- 
192), 
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/An, 2 =~/A,,(~) = 2n-1 c°s~ ~v2...cos ~ ~vnI:, (91) 
i 

/An, a =~/An, (~) -3 .~  [/An,(~)]2+3 [~/An,(~)] 2 
i i i 

= 3 cos 4 Y~2' ' -c°s4 ~ - [  22n-2 2 :9 -2an -aZa ]  , (92) 

/An, 6=- -~ , /An ,~ ) - -15~  ''ken, <i)"2 ~ n ,  (0 + 30 v [/An, (~0] 3 ~  ~-- 
i i i 

A- 15/An, 2/An, 4 - 3 0 / A a n ,  2 

= 5 cos ~ ~v2... cos s v2n[3.2an-aZa-- 9.2an-a~27a + 2~n-2~], 

(93) 

where X = n 2 n 4 2 ~ f i  , n  6 2 ~ f i  and I" 6 = 2.,Y, f i ,  X a =  
i i i 

the summations including all atoms in the motif. 
On averaging over all reciprocal space it follows tha t  

= } 

</An, 4> ---- 3n'2-=+~Z:~-3nZ'~ ' / (94) 

and </An, +> = 3.5n2-n+lZ3--9.5nZZ4~-5n2n+2~v' 6 

the leading terms in each expression corresponding 
with equation (33). The variance is 

v n  = 

= [3n2-n+l-l] Z~-3~Z'4, (95) 

which, for n = 0 and 1, agrees with the results already 
quoted. The importance of the correction term in- 
creases rapidly with n, becoming of the same order as 
the term in Z: ~ for n ~--log2 N, where N is the total  
number of atoms in the motif. The correction will, 
therefore, often be significant. 

5.3.2. Series expansions.--The distribution Pn(F) 
of equation (12), which appears to have no simple 
analytic expression, may be expanded as a series 
involving the Gaussian distribution and its derivatives. 
The general distribution function f(x) is given by the 
Gram-Charlier type-A expansion (Cramdr, 1946, 
p. 233) 

f(x) = 

1 
+-~. [/A~//A~- 15/A4//A ~+30]~bw(x)+. . . ,  (96) 

where ~b(x) is the Gaussian distribution (2~r)-½ exp 
(_½x2), qiIv and Cvi are its fourth and sixth de- 
rivatives, and, in the present application, x =/A~-½F. 
Then 

Pn(F) = Z'-½ {~b(I-½F) 

+(3~-x2 ..... .~ ~1 3-~-,2-aZa/Zo-)qixv(Z-~F) 

+ [3-12-n-z(5 =-x- 3 ~) + ~ - 2-4(Sn-X3-~-~)l j l  ~- 

+ 3-~5n-12n-2Z'J2:a] CvI ( - ) ' -½F)+ . . . } .  (97) 

So far as the accuracy goes (no account has been taken 
of atoms in special positions in the above calculation) 
this reduces to equation (71) of Hauptman  & Karle 
(1952) for n = 1. 

Unfortunately the terms written are not enough to 
give reasonable representations of P0 and P2, and it  
would be laborious to find the coefficients of further 
terms. 

5"4. Reliability index 
I t  has been shown tha t  for a randomly 'wrong' 

structure the reliability index, R =Z[ IFo] -[Fc[ [ +Z'[Fo[ 
cannot exceed 2, and tha t  for the acentric and centric 
distril~utions its most likely values are R 0 = 2-}/2 = 
0.586 and R1 = 2V2-2  = 0.828 (Wilson, 1950). Efforts 
to calculate the function Gn(F) required to evaluate 
Rn have not been successful, even for n = 2. However, 
the proportion of very weak reflexions increases 
rapidly for n > 1, Pn(0) being infinite, and it seems 
likely tha t  Rn> 1 will considerably exceed R 1 = 0.828. 
The general form of the v versus ~ graph (Fig. 4) 
makes it likely tha t  this will also apply to the other 
types discussed here. Large values of R for trial 
structures containing parallelism are, therefore, less 
discouraging than  they  would be in the absence of 
parallelism, and they may  be expected to drop rapidly 
on refinement, though probably not reaching quite 
such low final values. Tetraphenyl-cyclobutane had 
0.37, 0.26, 0.19, 0.16 as the values of R in successive 
stages of refinement (Dunitz, 1949). 

We are indebted to Dr H. Lipson for some helpful 
correspondence and the opportuni ty of seeing his and 
Woolfson's paper before publication. D. Rogers is in- 
debted to the University of Wales for an I.C.I. Fellow- 
ship. 
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