Acta Cryst. (1953). 6, 439

439

The Probability Distribution of X-ray Intensities. V.
A Note on some Hypersymmetric Distributions

By D. RoceErs anDp A. J. C. WiLSON

Viriamu Jones Laboratory, University College, Cardiff, Wales

(Received 27 September 1952)

The parallel repetition of a motif modulates the Fourier transform of the motif by the transform
of the repetition arrangement, thus increasing the dispersion of the resultant transform. Several
arrangements are considered in which the repetition involves the introduction of non-crystallo-
graphic symmetry. Statistical criteria are evaluated for the recognition of each of the resulting
distributions and some comments are offered on the correlation of the statistical evidence for
parallelism with that given by inspection of the reciprocal lattice or by the Patterson function.

1. Introduction

1-1

It was pointed out in § 24 of the first paper of this
series (Wilson, 1949) that pseudosymmetry can give
rise to abnormal intensity distributions, but it seemed
desirable to test the usefulness of the two usual
distributions before embarking on a detailed study
of pseudosymmetry. The discovery of the hypercentric
distribution by Lipson & Woolfson (1952) suggests
that this caution was unwarranted, and that a treat-
ment of distributions corresponding to the more
probable types of pseudosymmetry would be useful.

1-2

The hypercentric intensity distribution arises when
two molecules, each with a non-crystallographic centre
of symmetry, occupy general positions in a centro-
symmetric space group. They are then necessarily
parallel and their Fourier transform is modulated by
a sinusoidal fringe system which increases the disper-
sion beyond that of the centric distribution. An
obvious extension is () that each centrosymmetric
molecule should consist of two centrosymmetric parts
related by a further non-crystallographic centre of
symmetry, as in Fig. 1. (Dibiphenylene ethylene pro-
vides an approximation to such a molecule, but the
arrangement of molecules is complex (Fenimore, 1948).)
The modulation pattern is then the product of two
sinusoidal fringe systems which, in general, are un-
related in both spacing and orientation. This extension
is generalized in § 2, and will be termed hypercentro-
symmetry.

Other parallel arrangements have been considered
and are discussed in §§ 2, 3, 4. They are

(b) n-fold repetition of a motif by a group of
multiplicative translations (Fig.2), which will be
termed hyperparallelism,

(c) n-fold repetition of a motif at regular intervals
along a straight line, for which the modulation pattern
consists of one set of parallel fringes with a profile
of the form sin ny/sin yp,

(d) many repetitions of a motif at random in a
centrosymmetric or a non-centrosymmetric space
group, for. which the modulation pattern is irregular
with a centric or acentric distribution respectively.

1-3

It is obvious that the arrangements (2)-(d) above
do not exhaust the possibilities for even parallel
pseudosymmetry, but they are probably sufficient to
show the general effects of non-crystallographic
parallelism on the ordinary acentric and centric
distributions. So far as is known (§ 5:1), crystallographic
symmetry can result in only one or the other of these
two distributions, however many symmetry elements
are present, but unfortunately the effect of additional
non-crystallographic symmetry is not dependent merely
on whether the space group of the crystal is centro-
symmetric or not. A preliminary investigation sug-
gests that the effect of additional non-crystallographic
symmetry must be considered separately for at least
each crystal class. The distributions derived in this
note cannot, therefore, be applied uncritically to
cases other than (i) the space groups Pl and P1,
and (ii) projections without crystallographic symmetry
or with a crystallographic centre of symmetry only.

1-4

Although the higher types of hypercentrosymmetric
distribution can be generalized readily from that of
Lipson & Woolfson, a unified treatment has been
adopted here in which, so far as applicable, the
notations of Wilson (1949) and Cramér (1946, chap.15)
are used. In addition the structure factor for a single

" motif, which is not necessarily the crystallographic

asymmetric unit, is denoted by
M exp (iu) =2 f;exp (2nis.r)) ,
j=1

the structure factor of the repetition arrangement
(referred to the same origin) is denoted by
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4 exp (in) =2 exp (2nis.d;),
j=1

7

and that for the whole unit cell by F exp (tg), which,
for all the cases discussed here, may be written as

Fexp (ip) = MA exp i(u+x) . (1)

With the structure factor for a non-centrosymmetric
motif written in the form M = z+zy, the joint prob-
ability of x lying between x and x +dx, y lying between
y and y+dy, is (Wilson, 1949)

(1) P(z, y)dzdy = (nZy) exp {— (a2 +9?)|Zu}dudy ,
(2)
where X, = ):n (f;)? for all atoms in the motif. This
can also be w:i};ten as
V) P(M, u)ydMdy = (nXy) exp (—M?| Xy ) MdMdu
or 3)
(O P(M)dM = (2|2 y) exp (—M?|Ly) MdM , (3a)

since x4 has a uniform probability in the range 0 to
2. If, on the other hand, the motif is centrosymmetric,
its structure factor is real when referred to its centre
as origin, and the corresponding distribution of the
modulus is

M P(M)dM = (2/nX )t exp (—M22X ) dM . (4)

Three criteria already published for the recognition
of a distribution type are

(@) the cumulative probability N(z) = S P(z)dz,
0

where z = |F|?/2 = I/{I) (Howells, Phillips & Rogers,
1950),

(b) the test ratio p = {|FD*/|F|?> (Wilson, 1949),
and ’

(c) the specific variance v = V|22 = {(I—{I))*)|2*
(Wilson, 1951). These will be evaluated for each of the
cases considered and, for this purpose, some of the
moments of the distribution functions are required.
The mth absolute moment is

ve =\ F"P(F)IF (5)
0

(since in the present notation F is already a modulus),
and the corresponding central moment is

Ity = ¥, for m even,
=0 for m odd.

In particular v, is always equal to 2 (Wilson, 1942),
a consequence of the conservation of the diffracted
energy.
In terms of these, the second and third criteria
become
o =12 =9ifr, (6)
and
v= VX2 =(F)|22-]1 =y, r3—1. (7)
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2. Hypersymmetry

2-1. Hypercentrosymmetry

The Lipson—Woolfson case is generalized as follows.
Consider a crystallographic asymmetric unit built up
from 2"~ centrosymmetric motifs which are related
by a sequence of n—1 centres of symmetry at vectorial
positions d,, ..., d,, none of which coincide with a

3.@
0%z
@ +1 Q
Q Q@

Fig. 1. Hypersymmetric arrangement with n = 8. The cry-
stallographic centre of symmetry (1) is indicated by & cross,
the non-crystallographic local centres (2, 3) are indicated
by dots; d, is the vector from 1 to 2 and d, the vector from
2 to 3.

crystallographic symmetry centre (see Fig. 1, where
n = 3). The asymmetric unit is duplicated by the
crystallographic centre of symmetry at d, = 0. If
the unit cell contains only these two units

4 = |2"71 cos y, cos ;. . . cos Yal 5 ®)
where
Y= 2ns. d,‘ s
m
M= [22‘1ﬁeos971, )
i=
where
07‘ = 27!18.1'7' )
and
2 _ 27;—12}[ . (10)

Hence, for all points in reciprocal space defined by the
combination ,, ¥, ... ¥,, We have from equation (4)

[P‘n(F)dF]tpz.tpn

— @z 2L

—11121/2"2 cos? g,. . .cos? ] aF (1)
2"=1 cos ;. . .cos Y,

and, since each y; has uniform probability in the range
0 to 2n, this gives for all reciprocal space

P, (F)dF = (2" Zn?"1)}
in i
X S ces S exp [ —F?2 sec? y,. ..sec? y,/2" Y]
0 0

(12)

There does not seem to be any simple analytic ex-
pression for P,(F), though P, reduces to the ordinary
centric distribution and P, can be expressed in terms
of the zero-order Bessel function of the third kind,
K, (Watson, 1922, p. 78):

Py(F)dF = (4/a3X)%

X SEC Yy. . .86C P, dy,. . Ay, dF .

in
X So exp {—F? sec? y/42} sec wdydF , (13)
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which becomes, with the substitution sec ¢ = cosh 6,

Py(F) = (8Z)~} exp (—F2/5)
% Swexp (— F® cosh 20/8X)d(20) (14)
0

= (782) Y exp (— F2[8X) K (F?/8Y) (15)

by equation (5), p. 172, Watson (1922). The function
K, has an infinity at the origin; it is rather interesting
that Py (F) is zero, P,(F) is finite and P,(¥) and
higher members of the sequence are infinite for F=0.

2-2. Hyperparallelism

Consider a non-centrosymmetric space group and
an asymmetric unit containing 2" parallel non-centro-

3 ] Q
Fig. 2. Hyperparallel arrangement with n = 3. The displace-
yperp g

ments relating parallel motifs are indicated by the lines
marked 1, 2, 3; their lengths are d,, d,, d,.

symmetric motifs related by a chain of » displace-
ments (d, to d,), as in Fig. 2 for » = 3. This gives

A = |2" cos y, cos P,. . .cO8 P, , (16)
where, in this case,
Y; = TS, d7 s
and
2 =2, (17)
Then, by equation (3a),
P, (F)dF =
in pEA
(2FdF|7"X) S . S exp {—F?sec? y, . . .sec? y,/2"2}
0 o

x sec? ). . .sec? y,dy,...dy, . (18)

There is an obvious resemblance between this and
equation (12), which can be increased to formal
identity in the following way. Consider one-half of
the centrosymmetric motif of §2-1, for which, in an
obviously analogous notation,

: im .
M exp (ip) = 2 f; exp (16 (19)
=
A’ = |2" cos p cos p,. . .COS 1, (20)
and
2 = 2”251/ . (21)

Then, from equation (3),
P (F)dF = (2FdF|n"Y)

in b 24
X S . S exp {—F? sec? u sec? y,. . .sec? p,[2" 2}
0 0

X sec? u sec? y,. . .sec? ydudy,. . .dy, , (22)
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which is formally identical with equation (18), as it
is irrelevant whether the first integration variable is
called yp, or u.

This formal identity introduces a valuable economy
into the subsequent work. Any case of hypersymmetry

n
for which A takes the form [2" IT cos y,| will then
jm1

be covered by a general treatment, irrespective of the
particular physical significance attached to each ;.
Thus, where the cell contains only one or two asymme-
tric units (in the crystallographic sense), the results to
be obtained for n = 0,1, 2, ... represent with equal
validity the sequences acentric, centric, bicentric
(= hypercentric, Lipson & Woolfson), ..., or alter-
natively aparallel = acentric, parallel, biparallel, . ...
2:2-1.—One rather disturbing consequence of this
is that two parallel non-centrosymmetric motifs re-
lated by a non-crystallographic translation in a non-
centrosymmetric space group give the same (centric)
distribution as when they are in centrosymmetric

antiparallelism. Equation (18) becomes

¥
P(F) = (2F|nX) Si exp (—F2sec? p/22)dy , (23)
0

whence, with the substitution ¢ = tan ,

P(F)
— (2F|n5) exp (—F*2X) S:° exp (—F22/25)dt (24)
= (2/n2)t exp (—F2[2X), (25)

which is the centric distribution (equation (4)). This
conclusion is discussed in § 5-2-1 below.

2-3. Criteria for hypersymmelry

2:3:1. The N(z) test.—Equation (12) can be written
in terms of z as

P(z)dz =
in in

2in-lp-nt} S e S 27 exp {—z sec? y,. . .sec? y,/2"}
0 0

X sec Y. . .sec P, dy,. . .dy,dz , (26)

whence

N(z) = (2[n)*1x
SM. .. Sénerf [(z/2")% sec y,. . .sec Yol dps. . Ay, . (27)
0 0

It is easy to show directly from equation (18) that

for the acentric distribution (when y, =y, = ... =0)
Ny(z) = 1—exp (—2) . (28)

The above equation gives
N, (2) = erf (2/2)} (29)

and
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Table 1(a). Statistical data for the first few hypersymmetric distributions

n 0 1 2 3
Acentric or Centric or Bicentric or Tricentric or
aparallel parallel biparallel triparallel

z Ny(2) Ny(2) Ny(z) Ny(z)
0-00 0-0000 0-0000 0-0000 0-000
0-05 0-0488 0-1774 0-2924 0-386
0-1 0-0952 0-2481 0-368, 0-460
0-2 0-1813 0-3453 0-463, 0-548
0-3 0-2592 0-4187 0-526, 0-605
04 0-3297 0-4738 0-5734 0-647
0-5 0-3935 0-5205 0-611, 0-680
0-6 0-4512 0-5614 0-643; 0-705
07 0-5034 0-56972 0-670, 0727
0-8 0-5507 0-6289 0-693, 0-746
0-9 0-5934 0-6572 0-714, 0-762
1-0 0-6321 0-6833 0-733, 0-776
1-2 0-6988 0-7267 0-764, 0-800
14 0:7534 0-7633 0-791, 0-820
1-6 0-7981 0-7940 0-813, 0-837
2-0 0-8647 0-8427 0-848, 0-863
24 0-9093 0-8786 0-875, 0-884
2-8 0-9392 0-9058 0-896, 0-900

7 2 16 27

on T= 0-785 == 0-637 &= 0-516 &= 0-418

Vp 1 2 33 5% *
Table 1(b)

n 4 5 6 7

on 0-339 0-275 0-223 0-180
Vn 9125 14-19 21-78 33-17

in
Ny(z) = 2n—IS erf [32% sec pldy , (30)
0

which is easily proved to be equivalent to Lipson &
Woolfson’s expression, and is better suited to numerical
integration than equation (15). Table 1(a) and Fig. 3

10

N(z)

051

0 L N
0 1 2 3

Fig. 3. The cumulative distribution N(z) for the first four
hypersymmetric cases, n = 0,1, 2,3 (Table 1(a)).

indicate the comparative forms of these functions for
n = 0,1, 2, 3. Ny(2) was evaluated by summation at
5° intervals, while N;(z2) was computed from 15°
intervals in both y, and y,. Higher members of the
series were not considered worth computing, as no

immediate application is foreseen. The limiting form
for n - oo is presumably N(z) = 0 forz =0, N(z) = 1
for z > 0.

2-3-2. The variance and g tests.—The mth absolute
moment of P, is

Va,m = (2[7"2)

3
T

x sec? y, . ..sec? pdy,...dy,dF

— n‘"2"(§"‘+1)ft(}m+ I)Z'Qm
i i

X S ( cos™ y;... cos™ ydy,...dy, (32)

0 Yo

= g (i L (dm 4+ 1) Zm

i ’
s F+l exp {—F? sec? y,...sec? y, [2"2]}

‘o

(31)

(33)

Thus v, , = 2 for all n, and the test ratio is, from
equation (6),
Qn — 23n—2n—2n+1 ,

(34)

with the successive values shown in Tables 1(a) and

1(%).
The specific variance is, from equation (7),
v, = 2(3)"—1, (35)

the successive values of which are given in the same
tables. Fig. 4 indicates the relation between the
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Table 2(a). Statistical data for a non-centrosymmetric motif repeated n times in a straight line
n 1 2 3 4
z Ni(z) Ny(z) Ny(z) N,(z)
0-00 Acentric; Centric; 0-0000 0-0000
0-05 see see 0-243¢ 0-286,
0-1 Table 1, Table 1, 0-336, 0-394,
0-2 col. 2 col. 3 0-447, 0-517,
03 0-520, 0-584,
0-4 0-573, 0-640,
05 0-613, 0-676,
0-6 0-646, - 0704,
0-7 0-673, 0-725,
08 0-696, 0-744,
0-9 0-716, 0-759,
10 0-734, 0-772,
1-5 0-800, 0-820,
2:0 0-845, 0-854,
2-5 0-877; 0-879,
3-0 0-902, 0-899,
on 0-785 0-637 0-540 0-473
on 1 2 33 4}
10 2n sin? F?n gin?
0 1)P(M)dM], = 239 o f FPn "”}de
[((DP.(3)d ], 2 sin? ny 2'sin? ny ’
o (37)
where X' = nX and includes all atoms in the cell.
8@ o For the entire reciprocal lattice
05 ® o (1)P,(F)dF =
a
%) o I gin2 F2n sin?
@ 027 gin? p n sin? y
v tn)Em) | T2 Y oy { , }d FiF, (38
®v o o4 o (dn/2m) o sinny P Tsin? nyf Y » (38)
or, on transforming to z,
v ()P (z)dz =
0 n gin? 21 sin?
0 3 10 15 (2n/n)S - La exp{ — ’P} dydz, (39)
Fig. 4. A comparison of the test ratio, g, and the specific o SIn“ny sin® ny

variance, v, for each of the distributions discussed in this
paper.

Q: hypercentrosymmetry (n = 0,1, 2, 8, 4).

V: regular linear repetition of a non-centrosymmetric
motif.

A : regular linear repetition of a centrosymmetric motif.
[J: multiple random repetition.

specific variance, v,,, and g, for this and other sequences
of hypersymmetric distributions.

3. Regular parallel repetition in line
31

For the regular repetition of 2 motifs at intervals d
along a straight line, 4 takes the form

sin ny

, where y=ans.d. (36)

sin o
3-2
3:2-1. Non-centrosymmetric motif.—For all points in

reciprocal space with the same value of v, equation
(3a) takes the form

whence the cumulative probability N(z) becomes

()N, (2) = 1—27- S:nexp { -

in2
zn sin w}d’/)- (40)

For n = 1 this is [1—exp (—2)], the ordinary acen-
tric form. For n = 2 (the parallel case of §2-2) it is
possible to show, either by reversing the order of the
integrations in the derivation of equation (40), or by
expansion and term-by-term integration, that this has
the usual centric form, erf (}z)!. (1)N,(z) has been
evaluated for » = 3 and 4 by summation at 5° inter-
vals and the results are given in Table 2(a) and Fig. 5.

The first absolute moment is

sin? ny

(Lpy, 1 =
037 gin2 g Fp sin? .
(4n/Zm) SO SO ¥y 5P {— Tty } dyF*dF (41)
2\t (2047 sin ny
SR el e

For odd values of n (= 2k+1) the term in brackets
gives the Lebesgue constants, L, which are important
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05

0

0 1 2

Fig. 5. The cumulative distribution N(z) for » non-centro-
symmetric motifs at equal intervals on & straight line
(n=1,2,3,4) (Table 2(a)).

in the theory of the convergence of Fourier series.
Fejér (1910) gives a series which was found convenient
for the computation of the earlier constants, and
Watson (1930) gives the asymptotic formula

L, =4n2[Inn+2441+...], (43)

which gives values closely in accord with Fejér’s down
to k ~ 3, below which Fejér’s exact series was used.
Watson’s asymptotic formula (but not Fejér’s) may
be used for the even values of » also, but was sup-
plemented by direct expansion and integration for
n =2 and 4.

The second moment is

s = @) §

44
sin? y ’ (44)

which may be integrated with the aid of the Fourier
cosine expansion of sin? nyp/sin? p (Whittaker & Wat-
son, 1935, equation (84), p. 171) and gives (1)y, = 2
for all n, as expected. The fourth moment is

¥ 5ind ny
o sinty

)y g = 422/am25 dy, (45)

which is conveniently evaluated by squaring the
series just mentioned and integrating term-by-term.
This gives

(s = 4023 j2—2) T2 = [3n-3n+1)(2n+1)—2) 52

=1 (46)
so that the specific variance is
2 1

L)v, = 3 (2n+;b)~l . (47)

Values of this and the test ratio are given in Tables
2(a) and 2(c) for 1 < n < 10.

3-2-2. Centrosymmetric motif —The analysis is similar
to that of § 3-2-1, and gives

THE PROBABILITY DISTRIBUTION OF X-RAY INTENSITIES. V

()P (F)dF =
n Foy sin? sin
-1 1 _ Y ¥
277 (2n|2m) So exp{ 22 sin? mp} sin ny dydl’,
(48)
- in sin p (nz) if]
= —~1 S g
(T)N,(2) = 2n So erf [Sin 2 dy. (49)

This reduces to familiar forms for » =1 and 2,
and has been integrated numerically for n = 3 and 4
(see Table 2(b) and Fig. 6).

The moments are

- 7 |'sin mp‘
= 2(2 3p)%
(D1 = 2@Zjmemt | 7|2k | dy, (50)
so that comparison with equation (42) gives
= 2)2
s =22 1 o1)

0-5¢

% 1 2 3

Fig. 6. The cumulative distribution N(z) for n centrosymmetric
motifs at equal intervals on a straight line (n = 1, 2, 3, 4)
(Table 2(b)).

Similarly _

(1)vn,2 = l)vn,'.’ =2,

(W¥na = 104 (52)
whence _

(I)Qn = Sn_z(l)Qn (53)
and

- 1

(1w, = (2n+ﬁ>—1 , (54)

the values of which are listed in Tables 2(b) and 2(c).
'

33

The corresponding values of v, and g, from 3:2-1
and 3-2-2 are plotted in Fig. 4, and it is most remark-
able that they should all lie so very near the curve
obtained in § 2-3-2, but not quite on-it. It is also note-
worthy that for a given number of repeated motifs
the effects are much more pronounced when they are
arranged regularly in a straight line, rather than in
some hypersymmetric scheme.
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Table 2(b). Statistical data for a centrosymmetric motif repeated n times in a straight line

n 1 2 3 3

z N,(2) Ny(z) Ny(z) Ny(2)
0-00 Centric; Bicentric; 0-0000 0-0000
0-05 see see 0-349, 0-401,
0-1 Table 1, Table 1, 0-439, 0-486,
0-2 col. 3 col. 4 0-538, 0-589,
0-3 0-599, 0-650,
0-4 0-643, 0-6914
0-5 0-677, 0-722,
0-6 0-704, 0-746,
07 0-726, 0-765;
0-8 0-7454 0-781,
09 0-762, 0-795,
10 0-776 0-807;
1-5 0-828, 0-849,
2:0 0-862, 0-875,
2:5 0-886; 0-894,
3-0 0-905, 0-909,
on 0-637 0-516 0-438 0-383
v 2 31 5% 7%

Table 2(c)

n 5 6 7 8 9 10
(Lon 0-424 0-385 0-355 0-330 0-309 0-290
(1)vn 5% 7% 82 93 113 122
(Lon 0-343 0-312 0-288 0-268 0-250 0-235
Dy 9 114 134 15% 174 1975
4. Many parallel repetitions at random (Watson, 1922, p. 183, equation (15)). Transforming

to z and integrating with the aid of a standard re-

F t 91 . .
or, say, ten or more mofifs repeated randomly but currence relation (Watson, p. 79, equation (5)) gives

in parallel orientation the modulation pattern is

irregular and can be regarded as having a reasonable N(z) = 1-223K,(22%) (61)
approximation to one of the usual centric and acentric ) .
distributions. which is depicted in Fig. 7 (curve b) and tabulated in

Table 3, column 1.

4-1. Non-centrosymmetric motif in a non-centrosymme- 4.
tric arrangement
P(M, pydMdyu = (m23y) "t exp (—M?/2y) MdMdu ,
(55)

P(4, x)dAdx = (nZ,)" exp (—A2/Z,) AdAdx , (56)

n 05
where 2, = X (12) = n, the ‘large’ number of repe-

1
titions. Hence

N(z)

P(F)dF
277,27 400 F2 A% d4
— (72 -1 ol Guduin
(2nly) So So So exp{ i, n} yi doduFd¥r ,
. e 57) % 1 3 3
oe]
=431 S exp { _ﬂ_A__} d_4 FdF . (58) Fig. 7. The cumulative distribution N(z) for a large number of
0 422 ) 4 motifs repeated at random, but in parallel orientation
(Table 3).
Putting 2* = F2/X and y = A2Z}/nF gives a: Centric (one centrosymmetric motif), or parallel (two

n d non-centrosymmetric parallel motifs).
oo} . . .
Y b: Non-centros etric motif; non-centrosymmetric ar-
P(F)IF = 25-1FdF | exp{—x(?/-i-—)}—, (59)  rangoment, ’
0 y/)'y ¢: Non-centrosymmetric motif; centrosymmetric arrange-
ment or vice versa.

P(F)dF = 42_1K0(22_"'F VFdF (60) d: Centrosymmetric motif; centrosymmetric arrangement.

so that
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The moments are conveniently evaluated with the
aid of the relation (Watson, p. 388)

S:oKp(t)tq“ldt — 92T (q—;—p) g’(ﬂ’) ., (62)

2
and are », = InZt, (63)
Vg = 2 ’ (64)
vy = 422, (65)
| whence o = (n/4)? = 0617, (66)
and v=3. (67)

The N(z) curve closely resembles that for the parallel
distribution due to two parallel motifs. The addition
to these two of further parallel motifs seems to have
only a slight effect on g and N(z); the specific variance,
which is so much more sensitive to changes in the
distribution of the larger F’s, shows a larger change.

4-2. Centrosymmetric motifs in a non-centrosymmelric
arrangement

In a similar way
P(F)dF
27 00 2y A2
= 33 )? - =
(2/m32m) So So exp{ YD n}dAd(xdF, (68)

2FidF

T eI S:oexP {—=(2+1/y)}dy , (69)
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where
2% = F2[2X and y? = (22)}4nF,  (70)
" so that
P(F)dF = (2/2)} exp {—(2/2)}F}dF , (71)
N(z) = 1—exp {—(22)}}, (72)
and the moments are readily determined to be
" = (%2)% ’
vy =2, (73)
v, = 622,
whence o=1% } (1)
and v=25,

Values of N(z) are given in Table 3 and are depicted
in Fig. 7, curve c. It is evident that these results apply
equally to the converse case of non-centrosymmetric
motifs repeated in a centro-symmetric arrangement.
The resulting space group in either scheme is non-
centrosymmetric.

4-3. Centrosymmetric motyf tn a centrosymmetric arrange-
ment

For this

P(F)iF = (2/nZ%)dF S:oexp{ Fen f}%‘{ (75)

T 2342 2

o d
= @FaZh) | exp{-ety+ly} .  (76)

Table 3. Statistical data for multiparallel random arrangements

Non-centrosymmetric Centr;);grglfmetnc Centrosymmetric
motif, tri non-centrosymmetric motif, .
non(-lcentrosymme ni random arrangement czntrosymmetmc
random arrangemen and vice versa random arrangement
z N(z) N(z) z N(z)
0-00 0-0000 0-0000 0-00 0-0000
0-04 0-1263 0-271, 0-05 0-373,
0-09 0-2183 0-360; 0-1 0-460,
0-16 0-3106 0-468, 0-2 0-557,
0-25 0-3981 0-539, 0-3 0-617,
0-36 0-4785 0-591, 04 0-659,
0-49 0-5508 0-632, 05 0-692¢
0-64 0-6150 0-665, 06 0-719,
0-81 0-6713 0-6934 0-7 0-741,
1-00 0-7203 0-717, 0-8 0-760g
1-21 0-7626 0-738¢ 0-9 0-7764
1-44 0-7991 0-756, 1-0 0-791,
1-69 0-8303 0-787, 1-2 0-815,
1-96 0-8569 0-812, 1-4 0-833,
2-25 0-8795 0-832, 1-6 0-850,4
2-56 0-8987 0-849, 1-8 0-863,
2-89 0-9150 0-864, 2-0 0-875;
3-24 0-9287 0-893, 2-5 0-899,
361 0-9413 0-913, 3-0 0-915,
0 0-617 0-500 ' 0-405
v 3 8




D. ROGERS AND A.J.C. WILSON

where
2% = P24, y = A2} Fn, (77)
so that ‘

P(F)dF = (2/nZ) K (F|ZtdF (78)

(compare equation (60)), and the procedure of §4-1
gives

in
N(z) =1-2n"1 S exp {—2tsec}dl, (79)
0
v, = 2n-12%
vy =2, (80)
v, =922,
whence ¢ = 4/n% = 0405, } 81)
and v =8,

The values of N(z) are given in Table 3 (see also Fig.7,

curve d). The analysis of this paragraph is valid even
if none of the centres of symmetry of the motifs
coincides with the centres of symmetry of the arrange-
ment, in which unlikely event the unit cell would be
non-centrosymmetric.

4-4 .

Corresponding values of v and p for these cases of
random repetition are plotted as squares in Fig. 4,
and seem to represent the earlier part of another curve,
roughly parallel to those of § 2 and § 3. It is possible
to devise systems corresponding to higher points on
such a curve, but they are highly improbable and the
analysis becomes so complex that their examination is
impracticable.

5. Discussion
5-1. Occurrence

The various repetition patterns discussed in the
preceding sections have resulted from the introduction
of symmetry operations (centres of symmetry or
translations) unrelated to the space group. It is im-
portant to ascertain whether such parallelism of an
extended motif could ever occur through space-group
symmetry alone. As a result of an extensive, but not
exhaustive, search it has been concluded that it can
occur only for the ordinary non-primitive cells, in
which case the modulation pattern has a simple
relation to the reciprocal lattice and results in the
familiar and characteristic systematic absences. Paral-
lelism will also occur in projections on to a glide plane,
but it is again recognizable directly from the syste-
matic absences produced.

Parallelism of the types envisaged here does not,
therefore, appear to occur as a result of space-group
symmetry. It can occur, however, as a result of the
possession by the molecules of some symmetry elements
which are not used in the space group adopted by the
crystal. In addition to the examples cited by Lipson
& Woolfson (1952) for hypercentrosymmetry we have
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referred earlier to dibiphenylene ethylene. Further
examples are given in Fig. 8(c) and (d). Regular
parallel repetition in a straight line or even at random

X / x Y
Y
4
x Y
X
() y (b)
z x y
X
y X
b4
. (d)

Y 14
Fig. 8. Examples of molecules exhibiting hypersymmetry.

(a) and (b) Regular repetition in a straight line.

() f X =Y this is a perfect example of hypercentro-
symmetry (r = 3); if X # Y it is strictly only hyper-
parallel (n = 2), but would approximate so closely to the
former as to be indistinguishable experimentally.

(d) Is strictly an approximation to parallelism, but, unless
X, Y are very dissimilar, it approximates very closely to
hypercentrosymmetry (n = 2).

may occur in some polymers and proteins (Fig. 8(a), (b)),
although it is doubtful then whether the repeated
motifs would contain more than a fraction of the total
scattering power in the unit cell.”

5-2. Recognition of parallelism

5:2-1. From inspection or the Patterson map.—The
simpler types of modulation -pattern should be
evident upon inspection of the weighted reciprocal
lattice, but modulation patterns composed of several
unrelated fringe systems or the irregular varieties
considered in §4 will not be readily recognizable in
this way. Moreover, in many practical problems the
structural pseudosymmetry may only approximate to
one of those considered here, or may be partial in
that the repeated motifs do not account for all the
structure. In such cases ‘modulation’ effects may be
observable despite masking, but the foregoing results
cannot be expected to hold precisely.

The Patterson synthesis then furnishes more detailed
information, for it will contain exceptionally strong
peaks due directly to the repetition translations. Thus
for the arrangement of §3 the Patterson map will
take the form

P(r) =3 F? cos (2ns.1) (82)

in2
=3 M2 <S:;27%/}> cos (2ns.1)

8

(83)

which can be expanded (Whittaker & Watson, 1935,
p. 171) as follows:
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P(r) =2 M? cos (2ns.r){n+2(n—1) cos 2y

"L 2(n—2) cos dy+ ... +2 cos 2n—1)y}  (84)

=3 M2{n cos (2ns.r)+(n—1) [cos {2ns.(r+d)}

' +cos {2ns.(r—d)}]+...} (85)

This can be interpreted as the superposition of copies
of the Patterson map of the motif alone: n copies
of the original; (r—1) copies displaced by +d and an
equal number displaced —d; (n—2) copies displaced
+2d and —2d respectively, and so on.

For the hypersymmetric problem the Patterson
function can be written as

PD(r) =3 M2 cos y,. . .cos y,)? cos (2ns.r)
s
n—1

=3 M2 IT (1+cos 2y;) cos (27s.1) ,
S

i

(86)

which can be expanded and interpreted in an analogous
fashion as the superposition of displaced copies of the
motif Patterson resulting in a number of ‘origin’
peaks at various points in the cell. Even when there
are other atoms in the cell, the repeated motifs will
give rise to strong peaks at the same points in Patter-
son space, but they are then somewhat less conspicuous.
Patterson (1949) has already described such peaks
occurring in the vector map of a structure containing
some parts which conform to what may now be
recognized as the Lipson-Woolfson case of hyper-
centrosymmetry. This approach endorses Patterson’s
conclusion that to any peak at a point r; in the
Patterson map of a centrosymmetric structure there
is ‘some centrosymmetry about the point ir; in the
structure’; the stronger the peak the more extensive
is the centrosymmetry about that point.

We see here an analogue of this for non-centro-
symmetric structures; namely the well-known fact
that to any peak at a point r; in Patterson space there
correspond some equivalent intervectors in the struc-
ture. When the peak is very strong, and cannot be
accounted for by heavy-atom vectors, it indicates
some measure of non-crystallographic parallelism. The
[001] Patterson map of menthol (C3,) shows two ex-
ceptionally strong and sharp peaks of this type which
indicate extensive parallelism.

Inspection of the weighted reciprocal lattice and the
study of the Patterson map are evidently then the
most suitable methods in any attempt to detect
parallelism, especially since they will reveal partial
parallelism. In particular, there should never be any
difficulty in practice in deciding whether a distribution
of the centric type has arisen from centrosymmetry
or the parallelism of two non-centrosymmetric motifs
in a non-centrosymmetric cell.

5:2-2. Recognition by intensity statistics.—After the
foregoing remarks it may be wondered why hyper-
symmetric distributions have been investigated sta-

THE PROBABILITY DISTRIBUTION OF X-RAY INTENSITIES. V

tistically. Aside from their interest as mathematical
curiosities, however, these results may assist in the
identification of the kind of repetition, and will make
users of statistical methods aware of the existence of
additional distribution types. In particular, if the
statistical criteria determined in any problem do not
indicate unambiguously a centric or an acentric
distribution, the Patterson map should be examined
for evidence of parallelism; this, when present, always
increases the dispersion above that characteristic of
the space group. The interpretation of any of the
criteria for these more highly dispersive distributions
is less easy. The margin of discrimination diminishes
for the N(z) plot as the multiplicity of repetition
increases, but reference to Fig. 4 shows that a simul-
taneous determination of v and g may give a more
reliable indication of the type of arrangement. The
value of v is increased by the presence of experimental
errors of intensity estimation, and it may also be
necessary to make allowance for the limited number of
atoms in the motif (§ 5:3-1). The interpretation of such
results may be ambiguous whenever the parallelism
is inexact or only partial. Chemical evidence will
usually give warning of the possibility of parallelism;
the combined evidence from inspection of the reci-
procal lattice, the Patterson map and the statistical
criteria will then demonstrate its existence and may
indicate its extent.
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5:3-1. Limitation of number of atoms.—In the original
description of the variance test (Wilson, 1951) it was
shown that V takes the form 22—2, for the acentric
distribution and 222—3%, for the centric distribution,
where 2, =X f} for all atoms in the unit cell.

j

The second term allows for finiteness of the number
of atoms in the asymmetric unit. As the repeated
motif is never likely to contain many atoms, and as
this term appears to have greater significance in the
centric case, it was considered desirable to determine
its importance in the higher members of the hyper-
symmetric sequence. For this purpose the central
moments are calculated from the moments of the
distributions of the individual atomic variables,
random as a function of r;, which make up the struc-
ture factor. These are

& = 27f; cos (2n8.1;) COS P, . . .COS Y, . (87)
Averaging over regions of reciprocal space for which
the ¢’s are constant gives for the second, fourth and
sixth central moments

Un, D = 22" f2eos y,. . .cos? y, , (88)
o, ® — 3.2973 f4 08t Yo . .c08t Y, , (89)
Ha,§ = 5.2%"7% fTcos® y,. . .cos® p, . (90)

Hence, from results given by Cramér (1946, pp. 188
192),
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fnp =3 i, = 2" cos® gy cos?y, X, (1)
7
pina =2 pn, P =33 [un, PP +3[ 2 pa, 1
1 1 1
= 3 cost y,. ..cost y, [22 2 22233201 | (92)

Mn, 6 —Z M, (’)—152 Un, (21),“7; 4)_|_302 [, (z)]s

+ 1505, 2 tin, =304

=5c0s8 . . .cosby,[3.20n73 389 2013y 4 25n-2 3 ],

(93)

where X = 2"2ﬂ , = 2”2,‘]"z and X, = 2" 3 f§,
i

the summatlons including all atoms in the motif.
On averaging over all reciprocal space it follows that

<,un, 2> = Z )
(i ) = 3274152305,
and (i, oy = 3.5"2 1389 5nIX, 4 5r2M T,

(94)

the leading terms in each expression corresponding
with equation (33). The variance is

Vo= </"n, 4>_</“n, 2>2

= [3r2nH1_1] Z2—3"F, (95)

which, for n = 0 and 1, agrees with the results already
quoted. The importance of the correction term in-
creases rapidly with z, becoming of the same order as
the term in 22 for n ~ log, N, where N is the total
number of atoms in the motif. The correction will,
therefore, often be significant.

5-3-2. Series expansions.—The distribution P,(F)
of equation (12), which appears to have no simple
analytic expression, may be expanded as a series
involving the Gaussian distribution and its derivatives.
The general distribution function f(x) is given by the

Gram—Charlier type-4 expansion (Cramér, 1946,
p- 233)
f@) = x)+ j (14l s =31 7 (2)

+B—, Luel 13— 15,/ us +30] DV (z) + , (96)

where @(x) is the Gaussian distribution (27)-% exp
(—32?), @ and PV are its fourth and sixth de-
rivatives, and, in the present application, z = u,~F.
Then

P,(F)=X-}@Z}F)
+ (3n—12—n ~2 _%_3—n—12-324/22)¢1v(2—;F)
+ [3—12—n—3(5n—1_3n) + ?211 _2—4(57:—13—11—1)24/22
+3725m1202 5 SIS OV TR 4. L} (97)

ACs8

449

So far as the accuracy goes (no account has been taken
of atoms in special positions in the above calculation)
this reduces to equation (71) of Hauptman & Karle
(1952) for n = 1.

Unfortunately the terms written are not enough to
give reasonable representations of P, and P,, and it
would be laborious to find the coefficients of further
terms.

5-4. Reliability index

It has been shown that for a randomly ‘wrong’
structure the reliability index, R=2X||F,|—~|F,|+~2|F,|
cannot exceed 2, and that for the acentric and centric
distributions its most likely values are B, = 2—)/2 =
0-586 and R, = 2)/2—2 = 0-828 (Wilson, 1950). Efforts
to calculate the function G, (F) required to evaluate
R, have not been successful, even for n = 2. However,
the proportion of very weak reflexions increases
rapidly for » > 1, P,(0) being infinite, and it seems
likely that E,. ; will considerably exceed R, = 0-828.
The general form of the v versus p graph (Fig.4)
makes it likely that this will also apply to the other
types discussed here. Large values of R for trial
structures containing parallelism are, therefore, less
discouraging than they would be in the absence of
parallelism, and they may be expected to drop rapidly
on refinement, though probably not reaching quite
such low final values. Tetraphenyl- cyclobutane had
0-37, 0-26, 0-19, 0-16 as the values of R in successive
stages of refinement (Dunitz, 1949).

We are indebted to Dr H. Lipson for some helpful
correspondence and the opportunity of seeing his and
Woolfson’s paper before publication. D. Rogers is in-
debted to the University of Wales for an I.C.1. Fellow-
ship.
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